Complement activation and protein adsorption by carbon nanotubes

Carolina Salvador-Morales a, d, Emmanuel Flahaut b, Edith Sim c, Jeremy Sloan a, Malcolm L. H. Green a,∗, Robert B. Sim d

a Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QG, UK
b Centre Interuniversitaire de Recherche et d’Ingénierie des Matériaux, Université Paul Sabatier, 118 Route de Narbonne, Toulouse 31062, France
c Pharmacology Department, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
d MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK

Received 13 December 2004; accepted 9 February 2005
Available online 16 March 2005

Abstract

As a first step to validate the use of carbon nanotubes as novel vaccine or drug delivery devices, their interaction with a part of the human immune system, complement, has been explored. Haemolytic assays were conducted to investigate the activation of the human serum complement system via the classical and alternative pathways. Western blot and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) techniques were used to elucidate the mechanism of activation of complement via the classical pathway, and to analyse the interaction of complement and other plasma proteins with carbon nanotubes. We report for the first time that carbon nanotubes activate human complement via both classical and alternative pathways. We conclude that complement activation by nanotubes is consistent with reported adjuvant effects, and might also in various circumstances promote damaging effects of excessive complement activation, such as inflammation and granuloma formation. C1q binds directly to carbon nanotubes. Protein binding to carbon nanotubes is highly selective, since out of the many different proteins in plasma, very few bind to the carbon nanotubes. Fibrinogen and apolipoproteins (AI, AIV and CIII) were the proteins that bound to carbon nanotubes in greatest quantity.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Carbon nanotubes; Complement; Inflammation; Adjuvant; Apolipoproteins

1. Introduction

Carbon nanotubes (CNTs) can be described as rolled hexagonal carbon networks that are capped by half fullerene molecules. There are three main types of carbon tubes: single-walled (SWNTs), double-walled (DWNTs) and multi-walled (MWNTs). CNTs can be synthesised using the arc-discharge method (Ajayan et al., 1993) catalytic chemical vapour deposition (CVD) (Dai et al., 1996), and laser ablation (Guo et al., 1995). The dimensions of these tubular structures range from 0.4 to 2 nm in diameter for SWNTs, and from 2 to 100 nm for MWNTs. Both types have length typically ranging from 1 to 50 μm. The diameters of DWNTs are typically from 1 to 3.5 nm and they are from several micrometers to tens of micrometers in length (Flahaut et al., 2003).

The possibility to combine the remarkable specificity and parallel processing of biomolecules with the hollowed cavity, size and electrical properties of carbon nanotubes has attracted considerable attention for several types of applications, ranging from the creation of new types of biosensors (Chen et al., 2003) to the fabrication of drug or vaccine delivery devices (Georgakilas et al., 2002; Pantarotto et al., 2003a,b; Wong Shi Kam et al., 2004).

It has been shown (Pantarotto et al., 2003b) that peptide–carbon nanotube complexes enhance the immune (antibody) response against the peptides with no detectable cross-reactivity to the carbon nanotubes (i.e. carbon nanotubes are not intrinsically immunogenic). Functionalised carbon nanotubes have been shown to cross cell membranes.
and to accumulate in the cytoplasm without being toxic for the cell (Pantarotto et al., 2004). The absence of immunogenicity of carbon nanotubes in comparison to common protein carriers, the translocation of carbon nanotubes across the cell membrane without being toxic and the ability to enhance an immune response when attached to an antigen, strengthens the possibility of using carbon nanotubes as therapeutic and vaccine delivery tools.

The mechanism by which a functionalised single-walled nanotube can be internalised into the human promyelocytic leukemia cell line HL60 and human T cells without being toxic has been studied (Wong Shi Kam et al., 2004). A fluorescently labelled protein was shown to enter cells only when conjugated to a carbon nanotube (Wong Shi Kam et al., 2004). This work demonstrates that carbon nanotubes can be exploited as molecular transporters to carry cargoes into cells.

The biocompatibility and the possible hazardous effects that carbon nanotubes might induce in body fluids (e.g. human serum, plasma and blood) have to date not been reported. Such studies are required to help bring carbon nanotubes closer to the reality of pharmaceutical applications. A major problem in medical applications of nanoscale materials is whether the body’s immune system can recognise carbon nanotube materials (Gewirth and Siegenthaler, 1996). Little is known about the interaction between nanomaterials such as carbon nanotubes and the immune system. In order to validate the use of carbon nanotubes as a building block for the next generation of novel medical devices for diagnosis (e.g. ultra fast biosensors) and therapy (drug delivery) we have explored their interaction with the complement system.

The complement system is a group of about 35 soluble proteins in body fluids (e.g. human serum, plasma and blood) have to date not been reported. Such studies are required to help bring carbon nanotubes closer to the reality of pharmaceutical applications. A major problem in medical applications of nanoscale materials is whether the body’s immune system can recognise carbon nanotube materials (Gewirth and Siegenthaler, 1996). Little is known about the interaction between nanomaterials such as carbon nanotubes and the immune system. In order to validate the use of carbon nanotubes as a building block for the next generation of novel medical devices for diagnosis (e.g. ultra fast biosensors) and therapy (drug delivery) we have explored their interaction with the complement system.

The complement system is a group of about 35 soluble proteins in blood which interact to recognised, opsonise and clear or kill invading micro-organisms, altered host cells (e.g. apoptotic or necrotic cells) and other foreign materials (Sim and Tsiftsoglou, 2004). It can be activated by synthetic materials such as polystyrene (Andersson et al., 2002). Activation may occur by any of three pathways, termed the classical, lectin and alternative pathways. In the classical pathway, the protein C1q recognises activators mainly via charge and hydrophobic interactions, and binds to them. In the lectin pathway MBL binds to targets via interaction with neutral sugar residues (e.g. mannose). Similarly, t-l-ficolin can initiate the lectin pathway, but its recognition specificity is uncertain. The activation of complement via the alternative pathway starts by the binding of C3b to the pathogen surface and the subsequent events of complement activation via this pathway are analogous to those of the classical pathway.

2. Materials and methods

2.1. Synthesis of carbon nanotube samples

For this study two types of carbon nanotubes were used: single-walled and double-walled. SWNTs were produced by two different methods. Arc discharge SWNTs were synthesised at the Inorganic Chemistry Laboratory, University of Oxford, UK (Journal et al., 1997). SWNT samples were purified by refluxing them in a concentrated HNO3 solution (3h, 110°C) followed by repeated washing with deionised water and by a drying procedure (overnight at 110°C). Subsequently, these samples were partially oxidised in air for 45 min in a furnace at 400°C. Finally, the samples were annealed at 1400°C under Ar flow for 2h. Purified catalytic chemical vapour deposition SWNTs (CVD SWNTs) and high pressure carbon monoxide SWNTs (HIPco SWNTs) were purchased from Nanocyl S.A. company (Namur, Belgium) and Carbon Nanotechnology Inc. (Houston, TX), respectively. Purified catalytic vapor deposition double-walled nanotubes were made as described by Flahaut et al. (2003).

Plasma atomic emission spectroscopy studies were performed on the purified carbon nanotube samples to quantify the remaining traces of metal element impurities after the purification process. It was found that Arc discharge SWNTs contained 1.4% (w/w) Ni, HIPco SWNTs contained 1% (w/w) Fe, CVD SWNTs contained 0.2% (w/w) Co, CVD DWNTs contained 1% (w/w) Mo. There were no other significant metallic impurities.

2.2. Handling of nanotubes in aqueous buffers

Nanotubes have a hydrophobic surface and do not disperse rapidly in aqueous buffers. To form a suspension nanotubes can be first wetted by use of a surfactant, such as 0.5% Triton X-100. Initial experiments were done with nanotubes wetted in 0.5% Triton X-100. It was then observed that serum and plasma would also act as a “wetting agent” and experiments were repeated with nanotubes, which had been suspended directly in serum or plasma. No difference in complement-activating capacity was found between nanotubes wetted in Triton X-100 and nanotubes wetted directly in serum or plasma.

To study protein binding to nanotubes, suspending the nanotubes in protein solution, incubating and washing by centrifugation or filtration is impractical, as the centrifuged nanotubes are difficult to resuspend. For filtration, they form a layer, which is not sufficiently porous for efficient washing. For this reason, nanotubes were dispersed in a relatively inert porous scaffold (Sepharose 4B beads, Amersham Biosciences, Bucks, UK) for protein binding experiments.

2.3. Preparation of antibody-sensitised erythrocytes, rabbit erythrocytes, serum, plasma and radioiodinated C1q

2.3.1. Preparation of antibody-sensitised erythrocytes

Antibody-sensitised sheep erythrocytes (EA) were prepared as follows. Erythrocytes from sheep blood in Alsevers solution (TCS Biosciences, Buckingham, UK) were washed (10 min, 3000 rpm room temperature (RT)) three times in phosphate-buffered saline (PBS (137 mM NaCl, 2.6 mM
KC1, 8.2 mM Na2HPO4 and 1.5 mM KH2PO4 (pH 7.4)) before resuspending the erythrocytes in dextrose gelatin veronal buffer (DGVB2+; 2.5 mM sodium barbital, 71 mM NaCl, 0.15 M CaCl2, 0.5 mM MgCl2, 2.5%, w/v glucose, 0.1%, w/v gelatin, pH 7.4). Ten millilitres of sheep erythrocytes (adjusted to 10^9 cells/ml) were then incubated with 50 μl of rabbit anti-sheep haemolytic serum (C12HSA, Serotec, Kidlington, UK) for 1 h at 37 °C. EA were washed once in PBS, then three times in DGVB2+ and the concentration adjusted to 10^9 cells/ml in the same buffer.

2.5. Preparation of rabbit erythrocytes
Rabbit erythrocytes from rabbit blood in Alsever’s solution (TCS Biosciences) were washed three times in PBS and the concentration adjusted to 10^9 cells/ml in Mg–EGTA buffer (10 mM ethylene glycol-bis(2-aminoethyl)ether)-N,N,N’,N’-tetraacetic acid (EGTA)), 7 mM MgCl2; 2.1 mM sodium barbital, 59 mM NaCl, 2.08% (w/v) glucose, 0.08% gelatin, pH 7.4.

2.5.3. Preparation of serum and plasma
Serum was made by clotting human citrated plasma (HD Supplies, High Wycombe, UK) by addition of 16 mM CaCl2 with subsequent removal of the clot. This material was used for classical pathway and protein binding studies. Fresh human serum obtained from blood samples with no anticoagulant was used for alternative pathway assays. Clotted human serum obtained from blood samples with no anti-coagulant was used for classical pathway and protein binding studies. Fresh human serum obtained from blood samples with no anti-coagulant was used for alternative pathway assays. Clotted human serum obtained from blood samples with no anti-coagulant was used for classical pathway and protein binding studies. Fresh human serum obtained from blood samples with no anti-coagulant was used for alternative pathway assays.

2.3.3. Preparation of serum and plasma
Serum was made by clotting human citrated plasma (HD Supplies, High Wycombe, UK) by addition of 16 mM CaCl2 with subsequent removal of the clot. This material was used for classical pathway and protein binding studies. Fresh human serum obtained from blood samples with no anti-coagulant was used for alternative pathway assays. Clotted human serum obtained from blood samples with no anti-coagulant was used for classical pathway and protein binding studies. Fresh human serum obtained from blood samples with no anti-coagulant was used for alternative pathway assays. Clotted human serum obtained from blood samples with no anti-coagulant was used for classical pathway and protein binding studies. Fresh human serum obtained from blood samples with no anti-coagulant was used for alternative pathway assays. Clotted human serum obtained from blood samples with no anti-coagulant was used for classical pathway and protein binding studies. Fresh human serum obtained from blood samples with no anti-coagulant was used for alternative pathway assays.

2.3.4. Iodination of C1q
C1q was isolated from pooled human serum using affinity chromatography on IgG Sepharose (Reid, 1981). C1q was iodinated as follows: CPG-10 (BDH Chemicals, Poole, UK) by addition of 16 mM CaCl2 to remove unbound Na125I. Ten milligrams of iodogen-coated CPG-10 (500 g iodogen/ml) were mixed with

 SDS-PAGE gel bands were destained 3 times for 20 min in 100 μl 50 mM NH4HCO3 in 50% (v/v) SDS buffer. The supernatant was discarded and gel pieces were soaked in 0.1% (v/v) TFA or 5 % (v/v) acetonitrile as previously. Gel pieces were completely dried under vacuum, re-hydrated in 50 μl 10 mM dithiothreitol (DTT) in 100 mM NH4HCO3 and incubating (45 min, 56 °C). Gel pieces were chilled to room temperature and DTT solution removed by aspiration. Fifty microliters of 55 mM iodoacetamide in 100 mM NH4HCO3 was added and the gel pieces were incubated for 30 min at room temperature to alkylate free SH groups. Liquid was removed and gel pieces were washed with NH4HCO3/acetonitrile as previously. Gel pieces were completely dried under vacuum, re-hydrated in 50 μl 20 ng/μl trypsin in 100 mM NH4HCO3 (Sigma sequence grade) and left to incubate at 37°C overnight. The supernatant was removed and stored in a 0.5 ml conical centrifuge tube. Fifty microliters of acetonitrile-trifluoroacetic acid (TFA) water (50:1:49, v/v/v) was added to the gel pieces and the samples agitated for 20 min at room temperature. The supernatant was removed and pooled with supernatant from the previous step before being dried under vacuum as before. The sample was reconstituted in 10 μl 0.1% (v/v) TFA or 5 μl if from a faint gel band. One microliter of sample was mixed with 1 μl of saturated o-cyano matrix solution of which 0.5 μl was loaded onto the Ettan MALDI-ToF Pro mass spectrometer (Amersham Biosciences) target slide for PMF (peptide mass fingerprint) analysis in reflectron mode. Proteins were identified by comparison of the spectra to a computer-generated database of tryptic peptides from known proteins using ProFound, the instrument’s built-in search engine.
of undiluted human serum in empty wells. Samples were
zymosan is a positive control as it activates the classical
samples (Sigma) (0.62–2.5 mg) were suspended in 500
were suspended in 500 μl of undiluted serum and placed in wells of the same plate. Similarly, zymosan
were placed in the wells of a flat-bottomed 24-well plate (Greiner, Stonehouse, Gloucestershire, UK). Similarly, zymosan
consumption assay was done. Nanotubes (0.62–2.5 mg)
serum complement via the classical pathway a complement
activates/consumption
2.7.1. Complement activation/consumption via classical
To investigate whether carbon nanotubes activate human serum complement via the classical pathway a complement consumption assay was done. Nanotubes (0.62–2.5 mg) were suspended in 500 μl of undiluted human serum and placed in the wells of a flat-bottomed 24-well plate (Greiner, Stonehouse, Gloucestershire, UK). Similarly, zymosan samples (Sigma) (0.62–2.5 mg) were suspended in 500 μl of undiluted serum and placed in wells of the same plate. Zymosan is a positive control as it activates the classical pathway by binding anti-yeast antibodies present in human sera. A negative control sample consisted in placing 500 μl of undiluted human serum in empty wells. Samples were incubated at 37 °C for 1 h followed by centrifugation (2500 rpm, 10 min).

To test the classical pathway (Whaley, 1985; Whaley and North, 1997), the supernatants of each sample were serially diluted (two-fold serial dilution 1/2 to 1/1024 in DGBV37) and placed in a microtitre (96-well) plate. One hundred microliters of each dilution was incubated with 100 μl of antibody-sensitised EA (105 cells/ml in DGBV37) plus 100 μl DGBV37 in V-well microtitre plates (Dynex Technologies, Ashford, UK) for 1 h at 37 °C. After incubation, cells were spun down (2500 rpm, 10 min, RT), and haemoglobin was measured at 405 nm in the supernatant. Total haemolysis (100%) was measured by lysing the rabbit red cells with water. Background spontaneous hemolysis (0%) was determined by incubating rabbit red cells with Mg–EGTA buffer only. Kinetic studies of the activation of the complement system via alternative pathway were performed by incubating 500 μl of fresh serum diluted 1:1 (v/v) with Mg–EGTA buffer with 1.25 mg of DNTs or 1.25 mg of zymosan for 0, 5, 30 and 60 min at 37 °C, followed by haemolytic assay as above.

2.8. Selective binding of serum and plasma proteins to carbon nanotubes

2.8.1. Selective binding of serum proteins to carbon nanotubes

Experiments using human serum and human plasma were carried out to determine whether protein binding to carbon nanotubes is selective. Two Sepharose 4B columns were set up: a larger Sepharose column (10 ml) (not containing carbon nanotubes), and a small Sepharose column (1 ml, containing 5 mg DWNT suspended among the Sepharose beads). These were equilibrated in 20 mM Hepes, 50 mM NaCl, 0.5 mM MgCl2, 0.15 mM CaCl2, pH 7.0.

Human serum (10 ml) was diluted with 10 ml running buffer and passed through the large column to remove proteins which bind to Sepharose (these include IgG, IgM and fibronecin) then through the small column, to bind proteins which interact with the nanotubes. After this, each column was thoroughly washed with the running buffer. From each column, the resin was resuspended to a 1:1 slurry in the running buffer. One hundred microlitres of each slurry was centrifuged at 13,000 rpm for 5 min. The supernatants were removed. Fifty microlitres of SDS-PAGE sample buffer was added to the resins. Samples were incubated at 95 °C for 5 min and loaded on an SDS-PAGE gradient gel as in Section 2.4.1.
2.8.2. Selective binding of plasma proteins to carbon nanotubes

For binding of plasma proteins, 10 ml of human plasma was diluted with 10 ml of running buffer (Alsever’s solution: 294 mM trisodium citrate, 1.9% (w/v) glucose, 72 mM sodium chloride, 2.4 mM citric acid, pH 7.0) and then passed through the two columns, equilibrated in Alsever’s solution. After washing, resins were analysed by SDS-PAGE as above.

Proteins bands on the SDS-PAGE gel were stained, then low and high intensity protein bands were excised from the gel and prepared for protein identification by tryptic peptide finger printing by mass spectometry and N-terminal sequence analysis as indicated in Sections 2.5 and 2.6, respectively.

2.9. C1q binding to carbon nanotubes

To detect C1q bound to the DWNTs from serum, 100 μl of diluted serum was centrifuged at 13,000 rpm for 5 min. Supernatants were removed and 50 μl of SDS-PAGE sample buffer was added to each sample. Subsequently, these samples and a standard C1q sample (375 ng) were loaded in a 4–12% SDS-PAGE gradient gel and analysed by Western blot technique as described in Sections 2.4.1 and 2.4.2.

To provide additional evidence that C1q binds directly to carbon nanotubes a binding experiment with pure C1q was performed. Sepharose columns were used for each binding experiment. One column containing only Sepharose (1 ml packed volume) served as the negative control. For the other Sepharose columns, Sepharose (1 ml packed volume) was mixed with a suspension of DWNT (0.2–1.5 mg) in running buffer or in 500 μl of undiluted human serum was loaded onto each column. This material was left in contact with the column for 30 min at 4 °C followed by an extensive wash with the running buffer. Subsequently, the columns were placed in a Mini-Assay type 6-20 manual counter (Mini Instruments, Burnham-on-Couch, Essex, UK) in order to measure the amount of C1q bound to the carbon nanotubes. The serum contains many different proteins, at a total concentration up to 70 mg/ml and so provides a very large excess of competing proteins to minimise non-specific binding of C1q.

3. Results and discussion

3.1. Consumption/activation of complement via the classical pathway and alternative pathway

The activation of the human serum complement system via the classical pathway by different types of carbon nanotubes, including SWNTs and DWNTs is shown in Fig. 1. Zymosan, a yeast cell wall extract which is a well-characterised and potent complement activator, was used as a positive control to test classical and the alternative pathway activation, while the incubation of a human serum sample at 37 °C was used as a negative control. Zymosan is generally used as an activator of the alternative pathway, but in classical pathway assay conditions anti-yeast antibodies in human serum bind to the zymosan, and activate the classical pathway. All the carbon nanotube samples tested activated complement to an extent comparable with zymosan (positive control), showing dose dependence. Because of the configuration of the experiment with materials settled in microtitre plate wells, the high-

![Fig. 1. (A) Percentage consumption of human serum complement activity via classical pathway due to the presence of different types of carbon nanotubes. Procedures were as described in Section 2.7.1. Zymosan samples (2.5, 1.25 and 0.62 mg) were used as the positive control for each amount of carbon nanotube samples incubated with undiluted human serum. A sample of undiluted human serum incubated at 37 °C served as the negative control experiment (zero complement consumption). Percentage of complement consumption was calculated as (C−Ci)/Ci×100%, where Ci represents the total complement activity (in CH50 units) of the negative control, C is the amount of activity remaining in the supernatant of the sample tested, therefore (C−Ci) represents the amount of complement activity lost or consumed by the sample tested. The data points are the means of four determinations. (B) Time course of activation of complement system via classical pathway. Zymosan (2.5 mg) or DWNTs (1.25 mg) were incubated with 500 μl undiluted human serum for 0, 5, 30 and 60 min at 37 °C, and the remaining complement activity (CH50 units) measured by haemolytic assay. Complement consumption was calculated as for (A). Consumption of complement system by carbon nanotubes is rapid similar to zymosan (positive control).]
A sample of human serum incubated at 37°C with tube samples incubated with human serum diluted 1:1 in Mg–EGTA buffer. and 0.62 mg) were used as the positive control for each amount of carbon nanotubes. Procedures were as described in Section 2.7.2. Zymosan samples (2.5, 1.25 mg) served as the potential activator, and the haemolytic assay were performed in the presence of only Mg2+. The absence of Ca2+ in this assay prevented classical pathway activation. This is because the recognition complex of the classical pathway C1qR2 dissociates and is inactive in the absence of Ca2+. Complement consumption by DWNTs was dose-dependent, and was about 50% of the consumption by a comparable weight of zymosan. Complement consumption by HiPco SWNTs was dose-dependent, but very low (Fig. 2).

For testing activation of the human serum complement system via the alternative pathway, the incubation of serum with the potential activator, and the haemolytic assay were performed in the presence of only Mg2+. The absence of Ca2+ in this assay prevented classical pathway activation. This is because the recognition complex of the classical pathway C1qR2 dissociates and is inactive in the absence of Ca2+.

Kinetic analysis of activation of complement via both classical and alternative pathway compared to zymosan are shown in Figs. 1B and 2B. These studies show that the consumption of complement by DWNTs via classical and alternative pathway is rapid, similar to zymosan. The similarity in kinetics indicates that the mechanisms of activation by zymosan and by nanotubes are likely to be comparable. As a consequence of complement activation, fragments of various complement components are generated. C1b, C4b or the C3b breakdown products C3b or C3d are likely to bind to nanotubes, and this may lead to adhesion onto the surface of a range of blood cells. They may also stimulate uptake into the cell. This may be advantageous in use of nanotubes in vaccination, as it may be improve the presentation of antigens. Drugs contained in nanotubes, however, could be prevented from reaching their targets sites and if cytotoxic could damage components of the cellular immune system.

The relatively high level of complement activation might lead to the generation of an inflammatory response and also might lead to the formation of granulomas at a later stage. The creation of granulomas associated with the presence of carbon nanotubes has already been reported in studies of mouse lungs (Lam et al., 2004).

3.2. The selective binding of C1q and other plasma proteins to carbon nanotubes

To elucidate the mechanism of activation of complement via the classical pathway and to analyse the interaction of complement proteins with carbon nanotubes the binding of C1q to carbon nanotubes was studied.

Activation of the human serum complement system via the classical pathway takes place when C1q, the recognition subunit of the C1 complex, binds to complement activators. C1q is a 460 kDa protein composed of six heterotrimeric collagen-like triple helices that converge in their N-terminal half to form a stalk, then diverge to form individual stems, each terminating in a C-terminal heterotrimeric globular domain (Gaboriaud et al., 2003). C1 binds to target ligands via these globular domains, or heads, triggering activation of C1r and C1s, the proteases associated with C1q (Arlaud et al., 2002). In this study, we detected C1q protein bound to the carbon nanotube sample by using Western blotting (Fig. 3). Since C1q in serum circulates as the C1 complex (C1qR2), it appears that whole C1 is binding the nanotubes.

It was concluded that the binding of C1q to carbon nanotubes is highly selective, since out of thousands of different proteins in serum, very few proteins bind to the carbon nanotubes (Fig. 4). When DWNTs are exposed to human serum and plasma, only a few proteins bind in large quantity. These were identified by tryptic fingerprinting and mass spectrometry as fibrinogen and apolipoprotein AI. Several other bands are visible at lower intensity, these

![Figure 2](image126x304to299x592)

**Fig. 2.** (A) Percentage consumption of human serum complement activity via alternative pathway due to the presence of two types of carbon nanotubes. Procedures were as described in Section 2.7.2. Zymosan samples (2.5, 1.25 and 0.62 mg) served as the positive control for each amount of carbon nanotube samples incubated with human serum diluted 1:1 in Mg–EGTA buffer. A sample of human serum incubated at 37°C served as the negative control experiment (zero complement consumption). Percentage of complement consumption was calculated as $((C - C_i)/C) \times 100\%$, where $C$ represents the total complement activity of the negative control, $C_i$ is the amount of activity remaining in the supernatant of the sample tested, therefore $(C - C_i)$ represents the amount of complement activity lost or consumed by the sample tested. Each data point represents the mean and standard deviation of four independent experiments. (B) Time course of activation of complement system via alternative pathway. Zymosan (1.25 mg) or DWNTs (1.25 mg) were incubated with 500 l of human serum diluted 1:1 in Mg–EGTA buffer for 0, 5, 30 and 60 min at 37°C and the remaining complement activity (CH50 units) measured by haemolytic assay. Complement consumption was calculated as for Fig. 1A. Consumption of complement system by carbon nanotubes is rapid similar to zymosan (positive control).
include apolipoproteins AIV and C-III. From serum (which lacks fibrinogen), apolipoprotein A1 is the dominant protein. Serum diluted 1:1 was incubated with Sepharose–DWNTs equilibrated in 20 mM Hepes, 50 mM NaCl, 0.5 mM MgCl2, 0.15 mM CaCl2, pH 7.4. After removing unbound protein by exhaustive washing with the same buffer, a suspension of the Sepharose DWNT mixture was analysed for bound proteins by SDS-PAGE. Total bound serum proteins are shown by Coomassie blue staining in Fig. 4, track 3, while the presence of bound C1q was shown by Western blotting (Fig. 3, track 2). Sepharose without DWNTs was used as a negative control for the whole procedure (Fig. 3, track 1). C1q A, B chains (which co-run) and C chains are visible in Fig. 3, track 3, while the lower intensity signal in track 2 reveals only the A/B chain band. Anti-C1q antibodies were used to detect C1q. Lane 1: control experiment (human serum protein bound to Sepharose); lane 2: human serum proteins bound to DWNT Sepharose; lane 3: standard C1q (375 ng).

Carbon nanotubes could potentially cause complement activation. For the alternative pathway also, C3b binding might be direct or indirect. SWNT barely activate the alternative pathway, while the DWNT activate well (Fig. 2). Both DWNT and SWNT however show very similar overall binding of plasma and serum proteins (as in Fig. 4: CSM unpublished results), so the major carbon nanotube binding proteins identified in Fig. 4 are unlikely to be involved in indirect binding of C3b. Carbon nanotubes could potentially cause complement activation (consumption) by sequestering factor H, causing increased C3 turnover in serum. However, it is clear from Fig. 4 that carbon nanotubes do not bind factor H (a 155 kDa single chain glycoprotein).

Fibrinogen (Entwistle and Furcht, 1988) but the complement consumption assays reported in Figs. 1 and 2 were done in serum, not plasma, so fibrinogen is unlikely to be involved in complement activation.

Further tests were done using 125I-labelled C1q to show that C1q binds directly to carbon nanotubes, which have not been exposed to other serum proteins (Table 1). Therefore, it seems likely that classical pathway activation arises from direct binding of C1q to carbon nanotubes. As shown in Table 1, there is some residual binding of C1q to Sepharose alone (no nanotubes) in the presence or absence of serum. Increasing the quantity of DWNT in the Sepharose increases C1q binding, in the presence and in the absence of serum.

For the alternative pathway also, C3b binding might be direct or indirect. SWNT barely activate the alternative pathway, while the DWNT activate well (Fig. 2). Both DWNT and SWNT however show very similar overall binding of plasma and serum proteins (as in Fig. 4: CSM unpublished results), so the major carbon nanotube binding proteins identified in Fig. 4 are unlikely to be involved in indirect binding of C3b. Carbon nanotubes could potentially cause complement activation (consumption) by sequestering factor H, causing increased C3 turnover in serum. However, it is clear from Fig. 4 that carbon nanotubes do not bind factor H (a 155 kDa single chain glycoprotein).

Fibrinogen (Entwistle and Furcht, 1988) but the complement consumption assays reported in Figs. 1 and 2 were done in serum, not plasma, so fibrinogen is unlikely to be involved in complement activation.

Further tests were done using 125I-labelled C1q to show that C1q binds directly to carbon nanotubes, which have not been exposed to other serum proteins (Table 1). Therefore, it seems likely that classical pathway activation arises from direct binding of C1q to carbon nanotubes. As shown in Table 1, there is some residual binding of C1q to Sepharose alone (no nanotubes) in the presence or absence of serum. Increasing the quantity of DWNT in the Sepharose increases C1q binding, in the presence and in the absence of serum.

Table 1

<table>
<thead>
<tr>
<th>Quantity of DWNT (mg)</th>
<th>Presence (+/absence (-) of serum</th>
<th>% C1q bound DWNT (absence of human serum)</th>
<th>Presence (+/absence (-) of serum)</th>
<th>% C1q bound DWNT (presence of human serum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>+</td>
<td>6.4 a</td>
<td>0</td>
<td>6.2 b</td>
</tr>
<tr>
<td>0.2</td>
<td>+</td>
<td>9.1</td>
<td>0.2</td>
<td>9.1</td>
</tr>
<tr>
<td>0.4</td>
<td>+</td>
<td>17.9</td>
<td>0.4</td>
<td>17.9</td>
</tr>
<tr>
<td>0.8</td>
<td>+</td>
<td>19.7</td>
<td>0.8</td>
<td>19.7</td>
</tr>
<tr>
<td>1.0</td>
<td>+</td>
<td>22</td>
<td>1.0</td>
<td>22</td>
</tr>
</tbody>
</table>

Binding of 125I-labelled C1q to carbon nanotubes. DWNTs were immobilised in Sepharose. Sepharose alone was used as a negative control. Carbon nanotubes were exposed to 124,262 cpm (1.15 μg) of 125I-C1q. Binding of 125I-C1q was tested in the presence or absence of 500 μl of undiluted human serum.

% of labelled C1q bound to Sepharose in absence of nanotubes and in the presence of serum.

% of labelled C1q bound to Sepharose in absence of nanotubes but in the presence of serum.
Fig. 4. Selective binding of human serum and plasma proteins to DWNTs. As described in Section 2.8 the binding of serum and plasma proteins to DWNTs was tested. Serum diluted 1:1 in 20 mM Hepes, 50 mM NaCl, 0.5 mM MgCl₂, 0.15 mM CaCl₂, pH 7.0 or plasma diluted 1:1 in 294 mM trisodium citrate, 1.9% (w/v) glucose, 72 mM sodium chloride, 2.4 mM citric acid, pH 7.0, were run through affinity columns containing Sepharose (negative control) or Sepharose–DWNTs, each column equilibrated in the dilution buffer for plasma or serum as appropriate. After exhaustive washing in the same buffer, samples of the affinity resins were analysed by SDS-PAGE (reduced) (see Section 2.4). Lane 1: molecular weight marker; lane 2: control experiment (human serum bound to Sepharose); lane 3: human serum bound to DWNT Sepharose; lane 4: human serum (1.25 μl); lane 5: control experiment (human plasma bound to Sepharose); lane 6: human plasma bound to DWNT Sepharose; protein bands from the gel were identified by mass spectrometry tryptic digest fingerprinting or N-terminal sequence analysis as described in Sections 2.5 and 2.6. Protein bands corresponding to ∼35 and 37 kDa that are not identified in lane 3 and 6 were also analysed by mass spectometry and N-terminal sequence analysis but there was insufficient protein for their identification. Albumin, apolipoprotein AI, AIV and C-III were identified in serum samples. Albumin and apolipoprotein C-III were not identifiable by fingerprinting but were identified by N-terminal sequencing. Fibrinogen (a protein comprised of α, β and γ chains), apolipoprotein AI and AIV were identified in plasma samples. The spectrum of proteins bound (lanes 3 and 6) is very different from the spectrum of proteins in whole serum (lane 4), showing a high degree of selectivity in binding.

4. Conclusions

We have demonstrated for the first time that two types of carbon nanotubes, SWNTs and DWNTs activate the human serum complement system via the classical pathway, but SWNT hardly activate this pathway. The level of activation in both pathways was compared to that produced by an equal weight of zymosan, a well characterised and potent complement activator (Figs. 1 and 2). Activation of complement by carbon nanotubes via classical pathway will lead to generation of inflammatory peptides C3a, C4a and C5a, which are neutrophil chemotactic factor. The carbon nanotubes will also become coated with the opsonins C3b and iC3b. When these nanomaterials are introduced into a mammalian host, complement activation will result in accumulation of neutrophils and in adherence of phagocytic cells around them. Moreover, since these nanowires are too large to be phagocytosed, there may be discharge of degradative enzymes by neutrophils, causing tissue damage. There will probably be granuloma formation originating mainly from macrophage adherence (Diaz et al., 2000).

Complement activation products such as C3b, C4b, iC3b and C3d also act as adjuvants (i.e. they increase the immune response to foreign materials). This means that complement activators, including carbon nanotubes, which become coated with iC3b and C3d, may act as adjuvants. These findings are consistent with and may provide an explanation for the finding of Pantarotto et al. (2003b) who showed that the use of carbon nanotubes as adjuvant for peptide immunisation could enhance the formation of antibody responses. In that study (Pantarotto et al., 2003b) however, the nanotubes were functionalised (chemically modified). The mechanism of adjuvant activity relies on complement and complement receptor interactions such as interaction of C3d, bound to the complement activator, with its receptor CR2 on antigen presenting cells, including B lymphocytes. This receptor–ligand interaction can stimulate antigen presentation, B lymphocyte proliferation and immunoglobulin secretion (Fearon and Carroll, 2000).

The activation of human complement induced by carbon nanotubes might be diminished or eliminated by alteration of the surface chemistry. Variations in surface charge, for example, might promote binding of Factor H, a down-regulator of complement activation (Sim et al., 1993). Studies are in progress to determine the effects of chemical modification of nanotubes on complement activation.
Acknowledgments

This work was supported partly by the Medical Research Council, UK. C. Salvador-Morales acknowledges the Mexican National Council for Science and Technology (CONACyT) and The British Council for a Graduate scholarship. We thank Mr. A.C. Willks for the N-Terminal Sequence analysis measurements and for his joint supervision with Dr. D.A. Michell of the mass-spectrometry analysis.

References


